Eigenfunctions of the Laplacian on Rotationally Symmetric Manifolds

نویسنده

  • MICHEL MARIAS
چکیده

Eigenfunctions of the Laplacian on a negatively curved, rotationally symmetric manifold M = (Rn, ds2), ds2 = dr2+f(r)2dθ2, are constructed explicitly under the assumption that an integral of f(r) converges. This integral is the same one which gives the existence of nonconstant harmonic functions on M.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local and Global Analysis of Eigenfunctions on Riemannian Manifolds

This is a survey on eigenfunctions of the Laplacian on Riemannian manifolds (mainly compact and without boundary). We discuss both local results obtained by analyzing eigenfunctions on small balls, and global results obtained by wave equation methods. Among the main topics are nodal sets, quantum limits, and L norms of global eigenfunctions. The emphasis is on the connection between the behavio...

متن کامل

The characterization of eigenfunctions for Laplacian operators

In this paper, we consider the characterization of eigenfunctions for Laplacian operators on some Riemannian manifolds. Firstly we prove that for the space form (M K , gK) with the constant sectional curvature K, the first eigenvalue of Laplacian operator λ1 (M K) is greater than the limit of the first Dirichlet eigenvalue of Laplacian operator λ1 (BK (p, r)). Based on this, we then present a c...

متن کامل

Gradient estimates for eigenfunctions on compact Riemannian manifolds with boundary

The purpose of this paper is to prove the L∞ gradient estimates and L∞ gradient estimates for the unit spectral projection operators of the Dirichlet Laplacian and Neumann (or more general, Ψ1-Robin) Laplacian on compact Riemannian manifolds (M, g) of dimension n ≥ 2 with C2 boundary . And we also get an upper bounds for normal derivatives of the unit spectral projection operators of the Dirich...

متن کامل

Semiclassical measures and the Schrödinger flow on compact manifolds

In this article we study limits of Wigner distributions corresponding to sequences of solutions to the Schrödinger equation on a compact Riemannian manifold. After presenting some general results describing their structure, we give an explicit characterization of the set of such limits under an additional geometrical assumption on the manifold; namely, that its geodesic flow is periodic. Finall...

متن کامل

On Lorentzian two-Symmetric Manifolds of Dimension-fou‎r

‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998